Weighted Automata for Proving Termination of String Rewriting

Johannes Waldmann
Hochschule für Technik, Wirtschaft und Kultur (FH) Leipzig waldmann@imn.htwk-leipzig.de

String rewriting

"... is what the rules of a type-0 grammar do"

- rewriting system $R=\left\{l_{1} \rightarrow r_{1}, \ldots\right\}$ over Σ is set of pairs of words over Σ
- defines relation \rightarrow_{R} on Σ^{*} by $u \rightarrow_{R} v$

$\exists x, y \in \Sigma^{*},(l \rightarrow r) \in R: u=x \cdot l \cdot y, x \cdot r \cdot y=v$
example: $R=\left\{a^{2} \rightarrow b c, b^{2} \rightarrow a c, c^{2} \rightarrow a b\right\}$
- allows derivation $b b \boxed{a a} \rightarrow_{R} b \boxed{b b} c \rightarrow_{R} b a \boxed{C c} \rightarrow_{R}$ $b a a b \rightarrow_{R} b b c b \rightarrow_{R} a a c b \rightarrow_{R} a a b b \rightarrow_{R} \ldots$
- is there an infinite \rightarrow_{R}-chain?

Problems in String Rewriting

 given a finite rewrite system R,- is R terminating?
there are no infinite \rightarrow_{R} chains
- does R preserve REG? . . . preserve CF?
$R^{*}(L):=\left\{v \mid u \in L, u \rightarrow_{R}^{*} v\right\}$.
R preserves \mathcal{L} iff $\forall L \in \mathcal{L}: R^{*}(L) \in \mathcal{L}$
Focus of this talk: automatic termination (two meanings: automatically find weighted automata that are certificates of termination)

Plan of this talk

weighted finite automata allow unified view of:

- - Dieter Hofbauer, J. W.: Proving Termination with Matrix Interpretations, submitted, 2006
- D. H., J. W.: Termination of $\{a a \rightarrow b c$, $b b \rightarrow a c, c c \rightarrow a b\}$, to appear in IPL, 2006
- D. H., J. W.: Deleting string rewriting systems preserve regularity, TCS 327(3):301-317, 2004
- Alfons Geser, D. H., J. W.: Match bounded string rewriting systems, AAECC 15(3-4):149-171, 2004

(Global) Compatibility

general idea: use monotone interpretation into well-founded domain

- A is a V-weighted automaton over Σ, defines a weight function $A: \Sigma^{*} \rightarrow V$
- A is called compatible with relation \rightarrow on Σ^{*} if $u \rightarrow v \Rightarrow A(u)>A(v)$.
- $(V,>)$ well-founded and A compatible with \rightarrow implies \rightarrow is well-founded.
special plan: ensure compatibility of automaton A with rewrite relation \rightarrow_{R} by local conditions on A.

Local compatibility

If $(V,>)$ is ordered semi-ring with

$$
\begin{aligned}
& \text { - }(a>b) \Rightarrow(a+c)>(b+c) \\
& \text { - }(a>b) \wedge(c \neq 0) \Rightarrow(a \cdot c)>(b \cdot c)
\end{aligned}
$$

and A over Σ (states Q with i initial, f final) is locally compatible with R :

$$
\begin{aligned}
& \text { - } \forall x \in \Sigma: A(i, x, i)>0 \wedge A(f, x, f)>0 \\
& \text { - } \forall p, q \in Q,(l \rightarrow r) \in R: A(p, l, q) \geq A(p, r, q) \\
& \text { - } \forall(l \rightarrow r) \in R: A(i, l, f)>A(i, r, f)
\end{aligned}
$$

then A is (globally) compatible with \rightarrow_{R}.

Example (1)

$$
\begin{aligned}
& R=\{a a \rightarrow b c, b b \rightarrow a c, c c \rightarrow a b\}, \Sigma=\{a, b, c\} \\
& V=(\mathbb{N},+, \cdot, 0,1) \text { and standard ordering }>
\end{aligned}
$$

$$
a: 1, c: 1
$$

$A(i, a a, f)=2>1=A(i, b c, f)$
$A(r, b b, r)=4 \geq 4=A(r, a c, r)$.

How to find such automata

- fix number d of states, say 5 . automaton is mapping $t: \Sigma \rightarrow \mathbb{N}^{d \times d}$
- local compatibility \Rightarrow constraint system with $|\Sigma| \cdot d^{2}$ unknowns and $|R| \cdot d^{2}$ constraints
- fix maximal value for entries, say 7. \Rightarrow finite domain constraint system
- represent unknowns in binary \Rightarrow boolean satisfiability problem, (15.000 variables, 90.000 clauses, 300.000 literals) \Rightarrow solve by SAT solver (SateliteGTI) (takes 7 seconds)

Example (2)

standard test case for automated termination
$R=\left\{a^{2} b^{2} \rightarrow b^{3} a^{3}\right\}, \Sigma=\{a, b\}$
$V=(\mathbb{N},+, \cdot, 0,1)$ and standard ordering $>$

$A\left(i, a^{2} b^{2}, f\right)=1>0=A\left(i, b^{3} a^{3}, f\right)$

$$
A\left(q, a^{2} b^{2}, p\right)=4 \geq 1=A\left(q, b^{3} a^{3}, p\right) .
$$

Summary (so far)

- new automated termination method for string rewriting with powerful implementation (can solve problems that no other method can)
- developed in joint work with Dieter Hofbauer
- generalized to term rewriting in joint work with Jörg Endrullis and Hans Zantema
- can't handle more than 5 states well via SAT solver, more synthetic construction of automata (matrices) would be much desirable

Part 2: we show a variant of this method where we

A Multi-Set Semi-Ring

Idea: given V-weighted automaton A over Σ.

- For a path in A labelled $\left(w_{1} / v_{1}\right)\left(w_{2} / v_{2}\right) \ldots$, consider multi-set of weights $\left\{v_{1}, v_{2}, \ldots\right\}$.
- For a word w over Σ, consider lowest weight-multi-set of paths with $w=w_{1} w_{2} \ldots$
$\mathbb{M}(V)=\top \cup \mathbb{N}^{V}$ (with finite support) is semi-ring:
- $0:=\top, 1:=\emptyset$
- $A+B:=\min _{\gg}(A, B)$ (multiset extension of $>$)
- $A \cdot B:=A \cup B$ (adding weights), $A \cdot 0:=0$

Multi-set ordering

given $(V,>)$, define \gg on V-multi-sets as $>_{1}^{+}$for $\left(x>y_{1} \wedge \ldots \wedge x>y_{n}\right) \Rightarrow\left(A \backslash x>_{1} B \cup\left\{y_{1}, \ldots, y_{n}\right\}\right)$

- if $>$ total, then \gg total
- if $>$ well-founded, then \gg well-founded
$(\mathbb{M}(V), \gg)$ is ordered semi-ring (make \top maximal)

An alternative picture

. . . of this ordered semi-ring of multi-sets:

- domain is \mathbb{N}^{*} (but no leading 0): multiplicities, starting with largest element for $V=\{a>b>c>d\}$, $\{a, c, c\} \mapsto 1020$ and $\{b, c, d\} \mapsto 111$.
- ordering is length-lexicographic: $1020>111$
- multiplication is point-wise addition, right-aligned: $1020 \cdot 111=1131$
- addition is minimum w.r.t. ordering $1020+111=111$

A $\mathbb{M}(V)$-weighted Automaton

$A(a a)=$
$\left(\begin{array}{ccc}\{2,2\} & \{2,1\} & \top \\ \top & \top & \top \\ \{1,2\} & \{1,1\} & \top\end{array}\right)$
$A(a b a)=$

$$
\{0,0,1\} \quad\{0,0,0\} \quad \top
$$

For $A(1, a b a, 1)$ note $\{2,2,2\} \gg\{1,0,1\}$ etc.

Compatibility

for $\mathbb{M}(V)$, we have

$$
(a \gg b) \wedge(c \neq 0) \Rightarrow(a \cdot c) \gg(b \cdot c)
$$

we do not have

$$
(a \gg b) \Rightarrow(a+c) \gg(b+c)
$$

instead, will use

$$
(a \gg b) \wedge(c \gg d) \Rightarrow(a+c) \gg(b+d)
$$

to infer global compatibility (of a $\mathbb{M}(V)$-automaton with \rightarrow_{R}), need something sharper than local compatibility.

Strict local compatibility

If $(V,>)$ is ordered semi-ring with

$$
\begin{aligned}
& \text { - }(a>b) \wedge(c>d) \Rightarrow(a+c)>(b+d) \\
& \cdot(a>b) \wedge(c \neq 0) \Rightarrow(a \cdot c)>(b \cdot c)
\end{aligned}
$$

and A over Σ (states Q with i initial and final) is strictly locally compatible with R :

$$
\begin{aligned}
& \text { - } \forall x \in \Sigma: A(i, x, i) \neq 0 \\
& \text { - } \forall p, q \in Q,(l \rightarrow r) \in R: \\
& A(p, l, q)=0 \vee A(p, l, q)>A(p, r, q)
\end{aligned}
$$

then A is (globally) compatible with \rightarrow_{R}.

Flattening the Multi-sets

Given $(V,>)$, consider $V^{\prime}=V \cup\{-\infty,+\infty\}$ and semi-ring $\left(V^{\prime},-\infty,+\infty, \min _{>}, \max _{>}\right)$.
flat : $\mathbb{M}(V) \rightarrow V^{\prime}: B \mapsto \max B, \top \mapsto+\infty$ is a morphism of ordered semi-rings.

- (flat $B>$ flat $C) \Rightarrow(B \gg C)$ (but not " \Leftarrow ")
-(flat $B \geq$ flat $C) \Leftarrow(B \gg C)$
. . . will use the stronger ordering via flat

Strict "flat" compatibility

If the $\left(V^{\prime},>\right)$-weighted automaton A is strictly locally compatible with R, then its "lifted" $(\mathbb{M}(V), \gg)$-weighted automaton is compatible with \rightarrow_{R} (... but A itself is not $)$

this is the concept of match-boundedness.

Match-Bounded Rewriting

Annotate letters by numbers ("match heights").
In each rewrite step $x \cdot l \cdot y \rightarrow_{R} x \cdot r \cdot y$,

- annotate each letter in r by ($1+$ minimal annotation in l).
Example $R=\{a a \rightarrow a b a\}, a_{2} \underline{a_{3} a_{0}} \rightarrow a_{2} a_{1} b_{1} a_{1}$
If heights (starting from 0) are bounded, then
- R is terminating
- R effectively preserves REG
- R has certificate automaton (see prev. slide!)
- R^{-}effectively preserves CF

Summary, Open Questions

two termination methods using weighted automata:

- weights in $(\mathbb{N},+, \cdot):$ "matrix method", automata are "guessed" (finite domain constraint system)
- weights in (\mathbb{N}, \min , \max): match bounds,
(huge) automata can be efficiently constructed
Questions:
- efficient construction of $(\mathbb{N},+, \cdot)$ automata?
- existence of $(\mathbb{N}, \min , \max)$ automaton \Rightarrow existence of $(\mathbb{N},+, \cdot)$ automaton?
- other semi-rings for termination?

